
JOURNAL OF COMPUTATIONAL PHYSICS 63, 353-362 (1986) 

Simultaneous Solution of Temperatures in 
Plasmas with Rapid Equipartition Rates 

A. BIRNBOIM* 

The University of Alberta, Department of Electrical Engineering, 
Edmonton, Alberta T6G 2El Canada 

Rcccivcd January 22, 1985; revised June 13, 1985 

To overcome convergence problems in numerical simulations of plasmas with high 
exchange rates by the Medusa code (and probably by other similar codes), a new method, 
which is based on simultaneous solution of all temperatures is developed. This method, which 
is exact and very stable does not require extra space or time per iteration, thus allowing com- 
puting time-saving by the use of larger time steps. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

The numerical description of a multifluid plasma often runs into difficulties when 
the time scale for equipartition is much shorter than that of other physical processes 
in the plasma. As limiting the time step 6t by the equipartition time is impractical, 
other methods, allowing for larger 6t have to be used [l, 23. However, it turns out 
that some of these methods have convergence problems, that cause unphysical 
overshooting of the equilibrating temperatures. This happens when the equipar- 
titian rate is large, or when a large difference in the specific heat of the substances 
exists. 

Using the Medusa [3] code we found that in some cases we had to reduce the 
time step considerably, in order not to get overshooting of the temperature to 
negative values. We believe that this shortcoming is not caused by the degree of 
implicitness used in the finite difference solution, or by the exact way of averaging 
the energy exchange during the time interval 61. The source of the problem lies in 
the fact that the temperatures of the ions and the electrons are solved separately. 
Thus, in a given iteration, the energy transferred from one fluid to another, is deter- 
mined by parameters of the former iteration and not by temperatures solved in the 
present iteration. Being a very sensitive quantity, which depends on the difference of 
temperatures this term prevents the convergence of the algorithm. 

In this paper we describe a different approach which solves the temperatures of 
the ions and electrons simultaneously. This method which requires the same 
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calculation time per iteration as the former one, is stable and converges quickly, 
even for equipartition times much shorter than the timestep. In the next section we 
describe the mathematical system, the source of the problem, and a possible 
solution within the nonsimulataneous scheme. In Section 3 we represent the 
simultaneous solution of the temperatures. A simple example which demonstrates 
the type of problems in the original method, and the improvement caused when 
using the simultaneous solution, is brought in Section 4 together with our con- 
cluding remarks. 

2. NUMERICAL TREATMENT OF RAPID EQUIPARTITION RATES 

We write the energy balance equations of plasma composed of electrons and ions 
in the form 

(2.1) 

(2.2) 

where Ti( r,) is the temperature, CJ C,,,) is the specific heat, Si(S,) represents all 
the source terms except for the energy exchange term of the ions (electrons). The 
exchange coefficient x is proportional to the equipartition rate w - z’ln;l. n, T, 3:2 
which can be taken for example from Spitzer [4]. 

As the source terms Sj, S, include conductivity processes, Eqs. (2.1) and (2.2) 
represent (for N calculational mesh cells in one dimension) a set of 2N coupled 
equations. In the Medusa [3] the exchange term is incorporated in a certain way, 
to be described later, into the source term, and Eqs. (2.1), (2.2) are decoupled into 
two independent sets of N equations. Each set is transformed into a finite difference 
scheme of the type 

A;T;-, +B;‘c+CC;T;+, =D;+G;-‘, I = 1, 2,.., N, (2.3) 

where upper indices denote time levels and lower indices, mesh cells. The exchange 
contribution is included here in 0;. Equation (2.3) is solved by a Gauss elimination 
procedure [S] which diagonalizes the three diagonal coefficient matrix. 

The origin of the difficulties in treating the exchange term in Eqs. (2.1), (2.2) lies 
in the fact that unlike the other source terms it is determined by differences of two 
temperatures. Thus, even when the iterative guess of T,, T, has almost converged 
(giving approximately constant values for S,, Si) the difference (T, Ti) can change 
by orders of magnitude or even by its sign. If, moreover the coefficient x is very 
large convergence problems occurs. Demanding the term x( T, T,) to change only by 
a small amount during each time step would lead to extremely small 6t, of the order 
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of min(C,i/X, CJx). Thus one should look for a reasonable estimate of the con- 
tribution of this term during time intervals typical of the other processes in the 
system, which may be larger than the equipartition time be several orders of 
magnitude. 

We thus transform to a new set of equations, where the problematic quantity 
Ti - T, is treated explicitly. Adding and subtracting Eqs. (2.1) and (2.2) from each 
other, we obtain after integrating over the time interval 6t 

Co,ATi - T,,o) + C,,,( T, - T,,o) = (S, + S,) at, (2.4) 

;(ri-T,)+f(T,-7,)=n. (2.5) 

T;-T,=(T;,,-Te,,)e-f6’+$(~-~-~~‘), (2.6) 

where the subscript 0 denote the beginning of the time step, and in performing the 
integration we assumed that Si, S, do not change much during the interval ht. The 
transformed source and exchanged terms in Eqs. (2.5) (2.6) are defined by 

s, se 
g=C,,,-c’ 

f=(&+&)x. 

(2.7) 

(2.8) 

In the Medusa one uses the method proposed by Christiansen and Roberts [l] and 
averages the exchange contribution over the interval 6t, i.e., 

x(Ti-TMT;-T,)=y~;~“(T,(t)-T,,(t))dt 
0 

Ti-o-Te,o-” 
f 

(I-e--“‘)+g , 
I 

(2.9) 

where g is estimated iteratively from the difference equation derived from (2.5) 

g = C Ti - T, - ( Ti,o - T,,o) I@ + f ( T; + T;., - T, - T,.o)P. (2.10) 

As was mentioned earlier, this scheme is not stable when exchange rates are high, 
giving rise to overshooting of the exchanged energy, as will be demonstrated in Sec- 
tion 4. In some cases, the simulation is terminated as negative temperatures appear 
during iterations. 

We now present a possible way of preventing the overshooting, in a method 
similar to that of Ref. [2]. In this method Eqs. (2.1) and (2.2) are solved in two 
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stages. First, we insert x = 0 and obtain a zeroth-order solution which we denote by 
Ti,B, Te,B. This solution satisfies Eqs. (2.4), (2.6) in the special case were f -+ 0, i.e., 

Cu,i(Ti,~ - T,.o) + C,,(T,,, - Te,,) = (St + Se) 66 (2.11) 

Tz,B - T~,B = Ti.0 - Te.0 + g ht. (2.12) 

In practice this solution can be obtained by the usual procedure of the Medusa, 
applied with zero exchange. We note that when x = 0 this solution, obtained by 
decoupling Eq. (2.1) from (2.2) is exact. After solving this primary problem we are 
left with the residual problem obtained by the subtraction of (2.11) from (2.4) and 
(2.12) from (2.6) 

C,i( Ti - Ti,B) + C,e( Te - T~,B) = 0, 

Ti - T, = T,,, - Te,B + (T,,, - T,,,)(e -‘at - 1) + @ (1 - eAf6’ - f 6~). 
fdt 

Denoting the right-hand side of (2.14) by P we obtain 

(2.13) 

(2.14) 

T, = (Q + CJ’MCL.,i + C,,), (2.15) 

T, = (Q - C,,MC,., + C,.,), (2.16) 

with 

Q = CL,,, T,,, + Co,, Tc,w (2.17) 

The source term g which enters the solution through P is determined self con- 
sistently with the known solution of (2.12), which means that in calculating P we 
substitute. 

g St = T,, - TrB - (T,, - T,,). (2.18) 

For any value of f and St this solution behaves as expected from physical 
intuition. When the exchange rate is very small f 6t + 0, P -+ Ti,B - Te,B so that 
Ti --* Tis, Te + TpB giving the exact solution of the problem, where there is no 
exchange. In the obposite limit of high exchange rates f 6t + co, P -+ Ti,B - Te,B - 
( Ti,o - T,,J - g 6t = 0, and we get 

Ti = Te = (Cti,, T,,, + Cu., Te,.)/‘(C,, + C,e) (2.19) 

which describes a thermal equilibrium with a final temperature that conserves the 
total energy. Thus, even for an infinite exchange rate, or very long time steps, 
overshooting cannot occur, and we get just the expected equalization of the ions 
and electrons temperature. 

This model would have been exact if we were dealing with a single cell, or if there 
was no conductivity. However, when we have a strong exchange, the solution to the 
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conductivity problem, obtained by the implicit sweep over cells in (2.11), (2.12), 
deviates from the exact solution. The temperature T, in cell I should be determined 
recursively from the exact temperature T in cell 1+ 1 and not from the intermediate 
temperature T, in this cell. Again, the method described in (2.11), (2.12) is not 
solving the set of 2N coupled equations, that is our real problem. 

However, there is no need for approximations in solving (2.1), (2.2) as the set of 
2N equations can be solved simultaneously and exactly. This solution is presented 
in the following section. 

3. SIMULTANEOUS SOLUTION OF THE IONS AND ELECTRONS TEMPERATURE 

As a difference equations with the time centering system adopted in the Medusa 
(source terms defined as averages of their values at times fnP1, t”) we write 
Eqs. (2.1) and (2.2) in the form (omitting ceil indices for brevity): 

where the upper indices denote time steps t”, f-’ and f-(1/2)=~(tnp1+fn). The 
heat conduction terms in Si, S, couples each cell to its neighbours so that 
Eqs. (3.1), (3.2) can be arranged in the form 

4q,- 1 +B;,~‘I+C;,Ty,+, 9 3 +EX,c,,=D;,+G:;‘, (3.3) 

A:,JLl +B:,,T,, + c:IcI+l . . +EXIq,=D;,,+G’b;‘, (3.4) 

where the lower indices, I- 1, 1, I + 1 indicate different mesh cells and EX, = - ix,. 
The correlation with the original notation of the Medusa represented by Eq. (2.3) is 
obtained by setting the exchange contribution in D,, Di to zero and transforming 

B;, + B;, + ix; St, 

B:,, -+ B:,, + ix; 66 

G;; ’ -+ G;,- ’ + 4x7 - ’ St( c ; ’ - T;,- ’ ), 

G:7”G~,,‘+t~~-‘6t(~,-‘-T~~‘,‘). 

(3.5) 

From test runs that were performed we came to the conclusion that the scheme is 
more stable when the exchange term is treated fully implicitly as x”( T; - T;) and 
not as an average of contributions at times t” and t”- ‘. In this approach the 
exchange terms at the right hand side of Eqs. (3.1) (3.2) (with x”- ‘) appear in the 

581/63/2-S 



358 A. BIRNBOIM 

left side. All the former and later to come algebra remains the same if we define in 
(3.3), (3.4) KY, = -1, and change the transformation (3.5) to 

(3.5’) 

with no changes in G;; ‘, G;,; ‘. 
The stability of this implicit scheme is independent on the specific way in which x, 

is averaged over the interval 6t. Unlike the general approach adopted in the 
Medusa which averages values of x at the ends of the time interval. 

Xl = xxv;,> Tz,,)+ xcq; ‘> q; ‘)I 

we prefer to calculate x at the averaged temperatures of this time step: 
77-(1/2)=i y-1 + T”) 

A 

)#, =)/(p;‘lI2), &I.“). 

(3.6) 

(3.7) 

(3.8) 

Let us return now to the solution of Eqs. (3.3) (3.4). We arrange the 2N unknown 
temperatures in the following order: 

T” l,l) T” c, 1 ) T” 1.2 ’ T” . T” c.23 2 r.N) c..h’. 

For this arrangement the coefficients matrix contains nonzero elements only in 
the main diagonal, in the two nearest diagonals above it and in the two nearest 
diagonals below it. This live diagonal matrix can be easily diagonalized by the 
Gauss elimination procedure. 

We write Eqs. (3.3), (3.4) as 

A,T,-2 +XLLT,-, +B,T, +XR,dT,+, +Cr.TL+2 =D, +G,, (3.9) 

where T,,, is now called T,= 2,P r and T,,, is called T,,,,. The exchange terms to the 
left and right directions XL and XR, respectively are equal to zero or to EX, * 6t 

depending on the pairity of L. 
We search for a solution of (3.9) in the form 

T, =F,-E,TL+z +BLTL+,- (3.10) 

Inserting (3.10) into (3.9) for T,-,, T, _. , we obtain an equation that contains only 
L T,+, and TLC2, which is now compared to (3.10) to give explicit expressions 
for F,, EL, and bL: 

E, = C,lZ,, 

FL=[DL+GL-ALFL 2 - (ALBLL, + XL,) F,- ,1/Z,, 
(3.11) 

PL = [IEL- ,(ALBLLZ +XLL-XR,IIZ~, 

Z, =B, -ALE, -2 +PL--L(AJp2 +xL,). 
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Expressing this result by the variables of the original ion-electron system we obtain 
for an odd L 

T,,, =J’~,I -E~,LT~,I+I + Pi,/Tc,, (3.12) 

with 

and for an even L 

Te,, = Fe,, - Ee,, T,, + 1 + De,, Ti,, + I 3 (3.14) 

with 

Z,, = Be,, - 4&+ 1 + P;,IMJP,,,- 1 + Ex, 6th 

E,, = Ce,,lZe,,r 
(3.15) 

Fe,, = CD,,, + G,J - A .,rF+ I -Fe,,(A,,B,,, I + Ex, ~t)ll-C,,> 

Be,, = E,,,(A.,,P,,c- 1 + Ex, ~t)lZe,,. 

When there is no exchange EX, = 0, all the BP,,, pi,, vanish and this scheme coin- 
cides with the original decoupled solution of the Medusa when there is no 
exchange. 

The simultaneous solution is thus obtained as follows: 
First, we cancel the original exchange term appearing in the Medusa in the D,, 

Dj source terms. Then we correct for the coefficients B and G using Eq. (3.5) or 
(3.5’) according to the degree of implicity used. Using (3.5’) is recommended and 
then only B,, B, have to be modified. Now we calculate the terms in (3.13) and 
(3.15) in increasing order of Z, while for I = 1 we have 

Zi.1 = B,,l; El,1 = Ci,l /Zi,l~ 

Fi.1 = CD.1 + Gi,l l/Z;,, ; Pi.1 = - Exl ~t/‘Zi,l~ 
(3.16) 

Ze,, = Be,, + Ex, W,,, ; 41 = Ce,JZe,, 2 

Fe.1 = (De.1 + G,,, - Fi,, Ex, ~t)/Ze,, ; Se,, = -%EX, W-G,, . 
(3.17) 

The temperatures are finally obtained in decreasing order of I from eqs. (3.14) 
and (3.12) with 

To = Fo ; Ti,, = Fi,N + B;,N Te,N. (3.18) 
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The boundary conditions (3.16k( 3.18) apply for a system that is thermally isolated 
with A,, =Ae,i = C;,,, = C,,, = 0. If for example we allow heat flux from the right 
boundary coming from a heat .source of temperature T,, 1, we can still use the 
same expressions but with the modification 

(3.19) 

We conclude this section with a final remark about the accuracy obtained by the 
proposed procedure. With this stable scheme it is possible to start the calculations 
at the required room temperature (having an appropriate equation of state in this 
region). With such low temperatures the exchange rate (- TF’.~) is extremely large. 
Thus it may happen that the extra term x, 6t in Eq. (3.5’) is several orders of 
magnitude larger than the original B term. In a 32 bit computer like the one at the 
University of Alberta the final temperatures, obtained after back and forth sweeps 
of length 2N with many adding and subtractions of large terms, are slowly changing 
in time due to round of errors. We strongly recommend to make the sweeps of 
Eqs. (3.12~(3.15) with double precision. This of course should be followed by 
calculating (3.5’) too with double precision, and this can be done most conveniently 
by executing (3.5’) within the Gauss elimination subroutine. When we did this the 
obtained temperatures were exact and the solution was stable even for extremely 
high exchange rates. 

4. DISCUSSION AND RESULTS 

The simultaneous solution of the ions and electrons temperature was introduced 
into the Medusa code and several test cases of its applicability were performed. We 
find that it is now possible to largely increase the time steps and yet obtain con- 
vergence. If before we had, in some problems, to restrict the allowed changes in 
temperatures in a cell to 2% per time step, we are now able to work with 25% 
change per step. This becomes really important when one wishes to start the 
simulation with the experimental initial room temperature. 

As an illustration of the problems with the original scheme, and the way it is 
cured by the simultaneous solution, we describe a very simple test case. A 
homogeneous confined Al plasma is initially composed of 1000 eV electrons and 
1 eV ions. There is no laser source, no radiation emission and transport, and no 
conductivity as the plasma is homogeneous and is not allowed to move. The only 
relevant process is the equilibration which tends to equate the temperatures to a 
final value, which is determined by the specific heat ratio between ions and elec- 
trons. 

In Fig. 1 we plot the temperatures as a function of time (on a logarithmic scale) 
as obtained by three different calculations. The time steps in each calculation are so 
determined that the temperature change in each cell will not exceed 25% per time 
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FIG. 1. Temperatures as a function of time for the test case described in Section 4. (a) ions tem- 
perature; (b) electrons temperature; (1) (-) nonsimultaneous solution; (2) ( ‘. ) simultaneous solution 
with Spitzer’s exchange; (3) (---) simultaneous’solution with effective exchange rate similar to that of 
(1 h 

step. The solid lines (la) and (lb) represent the ions and electrons temperatures, 
respectively, as calculated by the original scheme. As the specific heat of the ions is 
smaller that that of the many free electrons, we get a strong overshoot (of almost 
100 eV) of the ion temperature beyond that of the electrons. This is followed by an 
oscillatory behaviour as a result of other overshootings in the equilibration process. 
The electron temperature is also oscillating, though this is not clearly seen on the 
scale of the figure. 

The dotted curves (2a), (2b) represent the results of the simultaneous solution 
when the Spitzer expression for the exchange rate is used. Though the equilibration 
is much faster, there is no overshooting or oscillations as both the ions and the elec- 
trons approach the final temperature. 

The different behaviour of the two models is not caused by the numerics, but 
mainly by the averaging procedure (2.9) used in the original scheme. If this effective 
reduction of the exchange rates was not performed, the convergence would become 
even worse. On the other hand, the convergence of the simultaneous solution is not 
sensitive to the specific form of the exchanged rates, and we are free to choose any 
model according to physical considerations. The dashed lines (3a), (3b) in Fig. 1 
represent a try to imitate the exchange rates used by the Medusa, within the 
simultaneous solution by defining the effective exchange rate 

x,/,-=x(T~-T,)I(T~-T,), (4.1) 

where the denominator is taken from the Medusa as in (2.9) and T, - T, in the 
denominator is calculated from a former iteration. As expected the curves (3a), (3b) 
are close to (2a), (2b), but do not exhibit the oscillatory behaviour, because of the 
more exact and stable nature of the simultaneous solution. 
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In conclusion we want to point out that the method can be extended to more 
complicated plasmas. For example, one can wish to describe relaxation processes 
between ions, electrons and a radiation field [6]. In this case the five diagonal 
matrix of Eq. (3.9) is replaced by a seven diagonal matrix, the diagonalization of 
which in the Gauss elimination procedure is also straightforward, with somewhat 
more lengthy algebra. In this case the overshooting problem can become a severe 
limitation, when a relatively low temperature radiation field, which has a very low 
specific heat, tries to raise the temperature of the electrons with higher specific heat, 
a situation that might cause an overshooting of the radiation temperature to 
negative values. 
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